翻訳と辞書
Words near each other
・ 内鮮融和
・ 内鰐
・ 内鰓
・ 内麦粒腫
・ 内黄
・ 内黄卵
・ 内黄県
・ 内鼡径ヘルニア
・ 内鼻孔
・ 円
円 (トポロジー)
・ 円 (数学)
・ 円 (通貨)
・ 円い
・ 円か
・ 円がい
・ 円きょ歯状
・ 円きょ歯状の
・ 円く輪になって踊る
・ 円すい


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

円 (トポロジー) : ミニ英和和英辞書
円 (トポロジー)[まる, えん]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [まる, えん]
 【名詞】 1. (1) Yen 2. money 3. (2) circle
: [ちょうおん]
 (n) long vowel mark (usually only used in katakana)

円 (トポロジー) ( リダイレクト:超球面 ) : ウィキペディア日本語版
超球面[ちょうきゅうめん]

数学において、 次元球面(-じげんきゅうめん、, ''n'' 球面)は普通の球面''n'' 次元空間への一般化である。任意の自然数 ''n'' に対して、半径 ''r'' の ''n'' 次元球面は中心点から距離 ''r'' にある (''n'' + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 ''r'' は任意の正の実数でよい。したがって、原点を中心とする ''n'' 次元球面は
:S^n = \left\
によって定義される。これは (''n'' + 1) 次元ユークリッド空間内に存在する ''n'' 次元多様体である。
特に:
* 零次元球面は二点、すなわち直線内の(一次元の対象である)線分の零次元の対象である端点の対、
* 一次元球面は、すなわち平面内の(二次元の対象である)円板の一次元の対象である円周、
* 二次元球面は三次元空間における(三次元の対象である)球体の二次元の対象である表面
である。
次元 ''n'' > 2 の球面は超球面 (hypersphere) と呼ばれることがあり、は glome と呼ばれることがある。原点に中心のある半径 1 の ''n'' 次元球面は -次元単位球面または単位 ''n'' 次元球面 (unit ''n''-sphere) と呼ばれ、''S''''n'' と表記される。単位 ''n'' 次元球面はしばしば ''the'' ''n''-sphere と呼ばれる。
''n'' 次元球面は (''n'' + 1) 次元球体の表面あるいは境界であり、''n'' 次元多様体である。''n'' ≥ 2 に対して、''n'' 次元球面は正のの単連結 ''n'' 次元多様体である。''n'' 次元球面にはいくつかの他の位相的記述がある。例えば、2 つの ''n'' 次元ユークリッド空間を貼り合わせることによって、-次元超立方体の境界を一点と同一視することによって、あるいは (''n'' − 1) 次元球面のを(帰納的に)作ることによって構成できる。
==解説==

任意の(0を含む)自然数 ''n'' に対して、半径 ''r'' の ''n'' 次元球面は (''n'' + 1) 次元ユークリッド空間のある固定された点 c から距離 ''r'' にある点全体の集合として定義される。ここで ''r'' は任意の正の実数でよく、c は (''n'' + 1) 次元空間の任意の点でよい。特に:
* 零次元球面は点のペア であり、線分(一次元球体)の境界である。
* は中心が c にある半径 ''r'' のであり、円板(二次元球体)の境界である。
* は三次元ユークリッド空間内の通常の二次元球面であり、通常の球体(三次元球体)の境界である。
* は四次元ユークリッド空間内の球面である。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「超球面」の詳細全文を読む




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.